48 research outputs found

    Geometric Embeddability of Complexes Is ??-Complete

    Get PDF
    We show that the decision problem of determining whether a given (abstract simplicial) k-complex has a geometric embedding in ?^d is complete for the Existential Theory of the Reals for all d ? 3 and k ? {d-1,d}. Consequently, the problem is polynomial time equivalent to determining whether a polynomial equation system has a real solution and other important problems from various fields related to packing, Nash equilibria, minimum convex covers, the Art Gallery Problem, continuous constraint satisfaction problems, and training neural networks. Moreover, this implies NP-hardness and constitutes the first hardness result for the algorithmic problem of geometric embedding (abstract simplicial) complexes. This complements recent breakthroughs for the computational complexity of piece-wise linear embeddability

    Rainbow Cycles in Flip Graphs

    Get PDF
    The flip graph of triangulations has as vertices all triangulations of a convex n-gon, and an edge between any two triangulations that differ in exactly one edge. An r-rainbow cycle in this graph is a cycle in which every inner edge of the triangulation appears exactly r times. This notion of a rainbow cycle extends in a natural way to other flip graphs. In this paper we investigate the existence of r-rainbow cycles for three different flip graphs on classes of geometric objects: the aforementioned flip graph of triangulations of a convex n-gon, the flip graph of plane spanning trees on an arbitrary set of n points, and the flip graph of non-crossing perfect matchings on a set of n points in convex position. In addition, we consider two flip graphs on classes of non-geometric objects: the flip graph of permutations of {1,2,...,n } and the flip graph of k-element subsets of {1,2,...,n }. In each of the five settings, we prove the existence and non-existence of rainbow cycles for different values of r, n and k

    Rainbow cycles in flip graphs

    Get PDF
    The flip graph of triangulations has as vertices all triangulations of a convex nn-gon, and an edge between any two triangulations that differ in exactly one edge. An rr-rainbow cycle in this graph is a cycle in which every inner edge of the triangulation appears exactly rr~times. This notion of a rainbow cycle extends in a natural way to other flip graphs. In this paper we investigate the existence of rr-rainbow cycles for three different flip graphs on classes of geometric objects: the aforementioned flip graph of triangulations of a convex nn-gon, the flip graph of plane trees on an arbitrary set of nn~points, and the flip graph of non-crossing perfect matchings on a set of nn~points in convex position. In addition, we consider two flip graphs on classes of non-geometric objects: the flip graph of permutations of {1,2,,n}\{1,2,\dots,n\} and the flip graph of kk-element subsets of {1,2,,n}\{1,2,\dots,n\}. In each of the five settings, we prove the existence and non-existence of rainbow cycles for different values of~rr, nn and~kk

    Scheduling with Machine Conflicts

    Full text link
    We study the scheduling problem of makespan minimization while taking machine conflicts into account. Machine conflicts arise in various settings, e.g., shared resources for pre- and post-processing of tasks or spatial restrictions. In this context, each job has a blocking time before and after its processing time, i.e., three parameters. We seek for conflict-free schedules in which the blocking times of no two jobs intersect on conflicting machines. Given a set of jobs, a set of machines, and a graph representing machine conflicts, the problem SchedulingWithMachineConflicts (SMC), asks for a conflict-free schedule of minimum makespan. We show that, unless P=NP\textrm{P}=\textrm{NP}, SMC on mm machines does not allow for a O(m1ε)\mathcal{O}(m^{1-\varepsilon})-approximation algorithm for any ε>0\varepsilon>0, even in the case of identical jobs and every choice of fixed positive parameters, including the unit case. Complementary, we provide approximation algorithms when a suitable collection of independent sets is given. Finally, we present polynomial time algorithms to solve the problem for the case of unit jobs on special graph classes. Most prominently, we solve it for bipartite graphs by using structural insights for conflict graphs of star forests.Comment: 20 pages, 8 figure

    Packing Squares into a Disk with Optimal Worst-Case Density

    Get PDF
    We provide a tight result for a fundamental problem arising from packing squares into a circular container: The critical density of packing squares into a disk is ? = 8/(5?)? 0.509. This implies that any set of (not necessarily equal) squares of total area A ? 8/5 can always be packed into a disk with radius 1; in contrast, for any ? > 0 there are sets of squares of total area 8/5+? that cannot be packed, even if squares may be rotated. This settles the last (and arguably, most elusive) case of packing circular or square objects into a circular or square container: The critical densities for squares in a square (1/2), circles in a square (?/(3+2?2) ? 0.539) and circles in a circle (1/2) have already been established, making use of recursive subdivisions of a square container into pieces bounded by straight lines, or the ability to use recursive arguments based on similarity of objects and container; neither of these approaches can be applied when packing squares into a circular container. Our proof uses a careful manual analysis, complemented by a computer-assisted part that is based on interval arithmetic. Beyond the basic mathematical importance, our result is also useful as a blackbox lemma for the analysis of recursive packing algorithms. At the same time, our approach showcases the power of a general framework for computer-assisted proofs, based on interval arithmetic

    Adjacency Graphs of Polyhedral Surfaces

    Get PDF
    We study whether a given graph can be realized as an adjacency graph of the polygonal cells of a polyhedral surface in R3\mathbb{R}^3. We show that every graph is realizable as a polyhedral surface with arbitrary polygonal cells, and that this is not true if we require the cells to be convex. In particular, if the given graph contains K5K_5, K5,81K_{5,81}, or any nonplanar 33-tree as a subgraph, no such realization exists. On the other hand, all planar graphs, K4,4K_{4,4}, and K3,5K_{3,5} can be realized with convex cells. The same holds for any subdivision of any graph where each edge is subdivided at least once, and, by a result from McMullen et al. (1983), for any hypercube. Our results have implications on the maximum density of graphs describing polyhedral surfaces with convex cells: The realizability of hypercubes shows that the maximum number of edges over all realizable nn-vertex graphs is in Ω(nlogn)\Omega(n \log n). From the non-realizability of K5,81K_{5,81}, we obtain that any realizable nn-vertex graph has O(n9/5)O(n^{9/5}) edges. As such, these graphs can be considerably denser than planar graphs, but not arbitrarily dense.Comment: To appear in Proc. SoCG 202

    The Complexity of Recognizing Geometric Hypergraphs

    Full text link
    As set systems, hypergraphs are omnipresent and have various representations ranging from Euler and Venn diagrams to contact representations. In a geometric representation of a hypergraph H=(V,E)H=(V,E), each vertex vVv\in V is associated with a point pvRdp_v\in \mathbb{R}^d and each hyperedge eEe\in E is associated with a connected set seRds_e\subset \mathbb{R}^d such that {pvvV}se={pvve}\{p_v\mid v\in V\}\cap s_e=\{p_v\mid v\in e\} for all eEe\in E. We say that a given hypergraph HH is representable by some (infinite) family FF of sets in Rd\mathbb{R}^d, if there exist PRdP\subset \mathbb{R}^d and SFS \subseteq F such that (P,S)(P,S) is a geometric representation of HH. For a family F, we define RECOGNITION(F) as the problem to determine if a given hypergraph is representable by F. It is known that the RECOGNITION problem is R\exists\mathbb{R}-hard for halfspaces in Rd\mathbb{R}^d. We study the families of translates of balls and ellipsoids in Rd\mathbb{R}^d, as well as of other convex sets, and show that their RECOGNITION problems are also R\exists\mathbb{R}-complete. This means that these recognition problems are equivalent to deciding whether a multivariate system of polynomial equations with integer coefficients has a real solution.Comment: Appears in the Proceedings of the 31st International Symposium on Graph Drawing and Network Visualization (GD 2023) 17 pages, 11 figure
    corecore